Министерство науки и высшего образования РФ Федеральное государственное автономное образовательное учреждение высшего образования «СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

СОГЛАСОВАНО			УТВЕРЖДАЮ				
Заведующий кафедрой		Заведующий кафедрой					
Кафедра органической и			Ка	афедра органической и			
аналитическо	ой химии		аналитической химии				
(ОиАХ_ХМФ))	(ОиАХ_ХМФ)					
наименов	ание кафедры			наименование кафедры			
			Ку	узнецов Б.Н.			
подпись, ини	циалы, фамилия			подпись, инициалы, фамилия			
«»		20Γ.	«	» 20_г.			
институт, реали	изующий ОП ВО			институт, реализующий дисциплину			
P	АНАЛИ БЛАГОН	ТИЧЕ(ОДНЫ	CKAS X MI	А ДИСЦИПЛИНЫ НЫЙ ЦИКЛ Я ХИМИЯ ЕТАЛЛОВ			
Дисциплина	Б1.В.01.02 Г	ІРОФЕСО	СИОН	НАЛЬНЫЙ ЦИКЛ			
Аналитическая хим		кая химия	н благо	городных металлов			
Направление подготовки / 04		04.04.0	1 Хим	мия, магистерская программа			
				Аналитическая химия			
Направленнос (профиль)	ТЬ						

Красноярск 2021

очная

2020

Форма обучения

Год набора

РАБОЧАЯ ПРОГРАММА ЛИСПИПЛИНЫ

составлена в соответствии с Федеральным государственным образовательным стандартом высшего образования с учетом профессиональных стандартов по укрупненной группе

040000 «ХИМИЯ»

Направление подготовки /специальность (профиль/специализация)

Направление 04.04.01 Химия, магистерская программа 04.04.01.02

Аналитическая химия

Программу составили

канд. хим. наук, доцент, Мазняк Н.В.

1 Цели и задачи изучения дисциплины

1.1 Цель преподавания дисциплины

специальная подготовка магистрантов в области аналитической химии благородных металлов.

1.2 Задачи изучения дисциплины

теоретическое и практическое освоение качественного и количественного анализа благородных металлов.

1.3 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

ПК-1н:Способен планировать работу и выбирать адекватные методы решения научно-исследовательских задач в выбранной области химии, химической технологии или смежных с химией науках

1.4 Место дисциплины (модуля) в структуре образовательной программы

Органические реагенты в аналитической химии Пробоотбор и пробоподготовка Химическая экспертиза

научно-исследовательская работа Научно-исследовательский семинар Прикладной химический анализ Методика преподавания химии Актуальные задачи современной химии

1.5 Особенности реализации дисциплины Язык реализации дисциплины Русский.

Дисциплина (модуль) реализуется без применения ЭО и ДОТ.

2. Объем дисциплины (модуля)

	_	Семестр
Вид учебной работы	Всего, зачетных единиц (акад.час)	1
Общая трудоемкость дисциплины	4 (144)	4 (144)
Контактная работа с преподавателем:	1,5 (54)	1,5 (54)
занятия лекционного типа	0,5 (18)	0,5 (18)
занятия семинарского типа		
в том числе: семинары		
практические занятия	0,5 (18)	0,5 (18)
практикумы		
лабораторные работы	0,5 (18)	0,5 (18)
другие виды контактной работы		
в том числе: групповые консультации		
индивидуальные консультации		
иная внеаудиторная контактная работа:		
групповые занятия		
индивидуальные занятия		
Самостоятельная работа обучающихся:	1,5 (54)	1,5 (54)
изучение теоретического курса (ТО)		
расчетно-графические задания, задачи (РГЗ)		
реферат, эссе (Р)		
курсовое проектирование (КП)	Нет	Нет
курсовая работа (КР)	Нет	Нет
Промежуточная аттестация (Экзамен)	1 (36)	1 (36)

3 Содержание дисциплины (модуля)

3.1 Разделы дисциплины и виды занятий (тематический план занятий)

				ятия кого типа		
№ п/п	Модули, темы (разделы) дисциплины	Занятия лекционн ого типа (акад.час)	Семинар ы и/или Практиче ские занятия (акад.час)	Лаборато рные работы и/или Практику мы (акад.час)	Самостоя тельная работа, (акад.час)	Формируемые компетенции
1	2	2	4	5	6	7
1	Введение. Вскрытие руд. Формы нахождения ионов благорородных металлов в растворе	7	8	8	0	
2	Химия золота, платины и сопутствующих и металлов и	4	0	6	0	
3	Концентрирован ие благородных металлов и отделение от сопутствующих	2	0	0	0	
4	Классические методы определения платиновых металлов и золота	3	4	0	0	
5	Физико- химические методы анализа	2	6	4	54	
Всего		18	18	18	54	

3.2 Занятия лекционного типа

No	№ раздела	Наименование занятий	Объем в акад.часах
J 1_	л раздела		Объем в акад. пасах

п/п	дисциплин ы		Всего	в том числе, в инновационной форме	в том числе, в электронной форме
1	1	Распространение и формы нахождения благородных металлов в земной коре» Положение платиновых металлов, золота и серебра в декадной таблице кларков элементов, формы нахождения металлов в земной коре. Природные соединения серебра и сплавы платиновых металлов, медно-никелевые руды — основной источник добычи благородных металлов. Размер мирового производства, структура потребления и цены	1	1	0

		Положение			
		благородных металлов в			
		Периодической таблице			
		Д.И.Менделеева.			
		Химические и			
		физические свойства.			
		История открытия			
		платиновых металлов,			
		специфика их			
		положения в таблице			
		Д.И.Менделеева.			
		Строение электронных			
		оболочек и свойства			
		металлов в триадах VIII			
		группы. Строение			
		внешних оболочек			
		атомов.			
		Поливалентность,			
		электроотрицательность			
		атомов металлов и их			
		реакционная			
		способность. Энергия			
		образования оксидов и			
		сульфидов. Атомные и			
2	1	1	2	0	0
2	1	ионные радиусы	2	U	U
		элементов. Склонность			
		благородных металлов к			
		комплексообразованию.			
		Характерные гибридные			
		орбитали.			
		Окислительно-			
		восстановительные			
		свойства.			
		Специфичность			
		физических свойств			
		платиновых металлов,			
		золота и серебра.			
		Величины температуры			
		плавления и плотности,			
		тугоплавкость.			
		Специфичность			
		физических свойств			
		золота и серебра.			
		Каталитические			
		свойства металлов и их			
		использование в науке и			
		технике. Свойства			
		сплавов благородных			
		металлов.			
1		MCTWIJIOD.			1

	1	1			
		Кислотный и хлорный			
		методы вскрытия			
		благородных металлов.			
		Инертность			
		благородных металлов			
		по отношению к			
		кислотам. Влияние			
		природы продуктов			
		растворения на полноту			
		протекания процесса.			
		Роль типа лиганда и			
		устойчивости			
		образующегося			
		комплексного			
		соединения.			
		Устойчивость к			
		действию кислот			
		металлов-спутников			
		платины: родия, иридия,			
		рутения и осмия.			
		Растворы комплексных			
3	1	соединений платинидов,	2	0	0
		обладающих высокой			
		окислительной			
		способностью –			
		эффективные			
		растворители самих			
		благородных металлов.			
		Метод жидкостного			
		хлорирования			
		газообразным хлором.			
		Достоинства и			
		возможности метода.			
		Влияние природы			
		растворяемых металлов			
		(величины изобарно-			
		изотермического			
		потенциала реакции) на			
		эффективность			
		процесса.			
		Фракционированное			
		растворение.			
L	!	1	l		1

4	1	Нетрадиционные методы. Использование окислительных свойств азотистой кислоты — «нитрит-процесс». Достоинства метода. Возможность регенерации азотсодержащих газов. Окислительная способность оксидов азота — продукта кислотного растворения. Использование метода для очистки атмосферы в рабочей зоне. Фторокислители благородных металлов. Их эффективность и перспективность и перспективность. Вскрытие металлов-спутников платины: методы окислительного плавления и спекания пероксида бария с образованием растворимых солей. Традиционный метод растворения золотосодержащих материалов — цианирование. Новые реагенты, растворяющие золото: тиосульфат и тиомочевина, СВЧ-метод вскрытия. Бактерии в металлургии золота.	1	1	0
---	---	--	---	---	---

					1
		Комплексные			
		соединения платиновых			
		металлов.			
		Использование в			
		анализе хлоридных			
		сред. Хлоридные			
		комплексы платины (II)			
		и платины (IV); аква- и			
		аквагидроксохлоридные			
		соединения; их высокая			
		устойчивость и			
		инертность. Реакция			
5	1	диспропорционировани	1	0	0
		я. Комплексы палладия			
		(IV); их высокая			
		окислительная			
		способность. Сведения			
		об устойчивости и			
		гидролизе соединений			
		палладия в			
		солянокислой среде.			
		Специфические			
		свойства комплексов			
		родия: склонность к			
		гидролизу.			

		T			1
		Основные химические			
		соединения платины.			
		Хлориды платины,			
		простые и комплексные.			
		Гексахлорплатиновая			
		кислота – продукт			
		растворения хлором и			
		«царской водкой».			
		Типичные степени			
		окисления платины.			
		Свойства платины, как			
		элемента группы			
		кислого сероводорода.			
		Галогениды и			
		комплексные			
		соединения на их			
		основе. Окислительно-			
		восстановительные			
		свойства. Типы			
		координационных			
		соединений:			
		ацидокомплексы,			
	2	амины, ацидоамины; их	1	0	
6	2	свойства и практическое	1	0	0
		использование.			
		Природа и прочность			
		химической связи ацидо			
		- и аминных комплексов			
		платины. Квантово-			
		механическая трактовка			
		устойчивости			
		комплексных			
		соединений,			
		координационного			
		числа,			
		пространственной			
		конфигурации. Тип			
		связи центрального			
		атома с лигандами;			
		гибридные орбитали.			
		Взаимосвязь между			
		координационным			
		числом, типом			
		орбиталей и			
		геометрическим			
		строением молекулы.			
		F C CILITETE INCOME, STEEL			

		IX			
		Изомерия комплексных			
		соединений платины.			
		Закономерность транс-			
		влияния.			
		Типы изомерии платины			
		в её соединениях.			
		Координационная			
		изомерия: катион- и			
		анион-комплексы.			
		Ионизационная и			
		гидратная метамерия.			
		Пространственная			
		изомерия – наиболее			
		важный тип изомерии.			
		Cis- и trans-изомеры			
		плоских квадратных и			
		октаэдрических			
	2	комплексов, их	1	0	
7	2	свойства.	1	0	0
		Закономерность trans-			
		влияния И.И.Черняева.			
		Взаимное влияние			
		лигандов на прочность			
		связи. Объяснение			
		различия прочности			
		атомов в cis- и trans-			
		положении			
		кинетическим и			
		термодинамическим			
		факторами. Вклад			
		русских учёных в			
		теорию химической			
		связи в			
		координационных			
		соединениях			
		платиновых металлов.			
		milatimobbix metalitob.			

		1		1	ı	
		Химические свойства				
		золота и его				
		соединений.				
		Содержание в земной				
		коре и формы				
		нахождения.				
		Уникальность				
		физических и				
		химических свойств,				
		классические методы				
		вскрытия золота и				
		материалов его				
		содержащих: царско-				
		1				
		водочный и хлорный.				
		Термодинамическая				
		оценка условий				
		количественного				
		отделения и				
		определения золота:				
		окисление,				
		восстановление,				
		экстракция, сорбция.				
		Специфические				
		свойства хлоридных,				
		цианидных комплексов				
8	2	золота (I) и золота (III).	1	1		0
		Комплексы с лигандами				
		-восстановителями.				
		Равновесие в системе:				
		[AuI4]- и [AuI2]				
		Хлорный метод				
		вскрытия. Растворение				
		за счет окислительных				
		свойств железа (III) и				
		платиновых металлов:				
		H2[PdCl6], H2[IrCl6], и				
		H[AuCl4].				
		Гидратированные и				
		аминные комплексы.				
		Главные свойства –				
		большое сродство к				
		электрону, легкость				
		восстановления до				
		металла, образование				
		анионных комплексов				
		линейной и				
		тетраэдрической				
		конфигурации, две				
		валентности I и III в				
		соответствии с типом				
		орбитали sp и sp3				
	1	oponiain sp n sps	L			

Свойства элементов, сопутствующих платине. Палладий – самый реакционоспособный из благородных металлов. Традиционные методы вскрытия: кислотный и хлорный. Палладий – типичный комплексообразователь. Ацидоаминные комплексы (transдиамин-хлорид)-основа для его определения и аффинажа. Органические реагенты в анализе палладия. Родий – нерастворим в кислотах. Спекание или сплавление с окислителями, хлорирование способы переведения в растворимую форму. Форма нахождения в растворе родия – комплексные соединения, склонные к гидратации. Гидролитические методы выделения родия. Нитритные и аминные комплексы родия – основа переведения в осадок в методах гравиметрического определения и аффинаже. Иридий – аналог родия. Элемент группы кислого сероводорода; устойчив к действию кислот и окислителей; III и IV- типичные степени окисления, отделение иридия от родия – нитритносульфидный метод и синтез АНГ (аммонийно -натриевый гексанитрит). 9 2 1 1 0 Использование в анализе окислительновосстановительных

свойств ирилия: Е0

Избирательное растворение и выделение. Сульфатизация – способ отделения примесей неблагородных металлов переведением в раствор. Нитрование – осаждение сопутствующих металлов из нитритных растворов. Осаждение платиновых металлов в виде сульфидов, тиомочевинных комплексов, аммонийных солей. Восстановление водородом. Диффузные методы отделения рутения и осмия в виде тетраоксидов; фракционное разделение на стадии улавливания МеО4. Электролитическое выделение, цементация. Электрохимическая характеристика благородных металлов; высокая электроположительност ь и большая скорость электровосстановления. Электролитическое рафинирование серебра из сплавов. Механизм 10 0 0 3 выделения серебра из 1 растворов цианидного комплекса. Электрохимическая характеристика золота. Отделение золота от сопутствующих платиновых и неблагородных металлов электрохимическим рафинированием. Механизм катодного восстановления золота. Электролитическое отделение платины и 15 палладия от металловспутников. Использование электролитического

	11	3	Сорбционные и экстракционные методы. Сорбционные методы — способ отделения платиновых металлов от цветных, разделение и концентрирование самих платиноидов. Используемые сорбенты: реагенты на основе кремнезёма, органические сорбенты, активные угли, волокна. Полнота и селективность извлечения. Механизм сорбции. Влияние форм нахождения металлов на эффективность процесса. Сорбция металлов в динамическом режиме. Экстракционные методы извлечения и разделения. Комплексообразование в водных и неводных средах. Форма существования экстрагируемого элемента и экстрагента. Классы соединений, используемых для экстракции. Типы экстракции. Типы экстракции. Типы экстракции — анионообменная, координационная, катионообменная. Амины и соли четвертичных аммониевых оснований — эффективные экстрагенты платиновых металлов. Механизм сорбции. Сорбционное извлечение золота и нитрозонитратных комплексов рутения диалкилсульфидами. Экстракционное разделение платиновых металлов трибутилфосфатом. Бини полидентатные экстрагенты.	1	0	
--	----	---	---	---	---	--

		Платиновые металлы,			
		золото и серебро –			
		элементы группы			
		кислого сероводорода.			
		Ограничение метода:			
		неизбирательность			
		реактивов, влияние			
		среды. Сочетание			
		методов обнаружения с			
		разделением. Новые			
		индикаторные реакции с			
		малым пределом			
		обнаружения.			
		Гравиметрия.			
		Методы гравиметрии,			
		преимущество и			
		недостатки			
		применительно к			
		благородным металлам.			
		Особенности			
		гравиметрических форм. Классический			
		1			
		метод определения			
		платины в виде			
		гексахлорплатината аммония. Окислительно			
		-восстановительное			
		маскирование			
		мешающих элементов.			
		Органические			
		осадители платины:			
		муравьиная кислота и её			
		соли. Осаждение			
		платины из растворов её			
		солей и аммиачных			
		комплексных			
12	4	соединений.	1	1	0
		Палладий, как самый	-	_	
		реакционоспособный из			
		группы платиновых			
		металлов, осаждается			
		рядом реагентов,			
		преимущественно			
		органических.			
		Классический метод –			
		применение оксимов.			
		Особенности методов			
		гравиметрического			
		определения золота.			
		Неорганические			
		реагенты –			
		восстановители из			
		различных сред.			
		Методы осаждения			
		золота платиновыми			
		металлами и их			
		комплексами.			

	1				
		Титриметрия.			
		Особенности методов:			
		медленное			
		установление			
		равновесия в растворе			
		комплексных			
		соединений,			
		неизбирательность,			
		неспецифичность,			
		невозможность			
		последовательного			
		титрования.			
		Окислительно-			
		восстановительное			
		титрование.			
		Титриметрическое			
		определение степени			
		окисления платины.			
		Комплексонометрическ			
		ое определение			
		палладия. Осадительное			
		титрование иодидами.			
		Отсутствие реагентов			
		титриметрического			
		определения родия.			
		Методы редуктометрии			
		для определения			
		иридия. Пригодность			
		методов для хлоридных			
		комплексов.			
13	4	Титриметрическое	1	0	0
		определение рутения и			
		осмия после их			
		дистилляции.			
		Органические и			
		неорганические			
		титранты.			
		Использование			
		вариантов обратного			
		титрования —			
		характерная			
		особенность анализа			
		платиновых металлов.			
		Потенциометрическое и			
		амперометрическое			
		определение точки			
		эквивалентности.			
		Особенность			
		титриметрического			
		определения золота:			
		единая форма			
		нахождения и			
		восстановления до			
		металла			
		многочисленными			
		реагентами.			
		Многоступенчатость			

14	4	Пробирный анализ. Метод высокотемпературной экстракции расплавленными солями. Определение малых содержаний благородных металлов в труднорастворимых образцах: рудах, минералах, шлаках. Коллекторы металлов — расплавы свинца, меди, серебра. Окислительно- восстановительное плавление. Реагенты в пробирном анализе. Операции купелирования и шерберования. Физико- химические процессы при плавлении анализируемой пробы. Продукты плавления: сплав благородных металлов со свинцом — веркблей и шлаки. Получение сплавов благородных металлов, их кислотное разделение и определение. Новое направление в области пробирного анализа — микропробирная плавка. Анализ на пробирном камне.	1	1	0
----	---	--	---	---	---

		T			1
		Спектрофотометрическ			
		ие методы.			
		Методы			
		фотометрического			
		определения			
		платиновых металлов			
		многочисленны, но			
		неизбирательны и			
		неспецифичны.			
		Сочетание методов с			
		экстракцией и			
		сорбцией.			
		Использование			
		органических реагентов			
		и водно-органических			
		сред, различий в			
		кинетике образования			
		окрашенных			
		1 -			
		комплексов и в спектрах			
		поглощения.			
		Классические методы			
		фотометрического			
		определения: платины с			
		иодидом калия и			
15	5	хлоридом олова,	1	0	0
		палладия с			
		диметилглиоксимом,			
		рутения и осмия по			
		окраске тиомочевинных			
		комплексов, родия и			
		иридия по окраске			
		хлоридных.			
		Специфичность			
		фотометрических			
		методов определения			
		золота: по окраске золей			
		и гелей элементного			
		металла. Новое			
		направление -			
		твердофазная			
		спектрофотометрия.			
		Возможности атомно-			
		абсорбционной			
		спектроскопии в			
		сочетании с			
		сорбционными			
		методами. Введение			
		сорбента в			
		электротермический			
		атомизатор.			<u> </u>
	1	<u> </u>	l	1	.1

16 5	Электрохимические методы. Склонность платиновых металлов, золота и серебра к электровосстановлению из их соединений. Электрохимические методы выделения: электрогравиметрия, кулонометрия, вольтамперометрия. Ограничения возможностей использования метода: близость окислительновосстановительных потенциалов благородных металлов, большая устойчивость комплексных соединений, каталитические свойства металлов, трудность восстановления родия,	1	0	0
	большая устойчивость комплексных соединений, каталитические свойства металлов, трудность			
Page		10	6	0

3.3 Занятия семинарского типа

	Mo		Объем в акад. часах			
№ п/п	№ раздела дисципл	Наименование занятий	Всего	в том числе, в инновационной	в том числе, в	
11/11	ины	JJ1	Beero	форме	электронной форме	

1	1	Разделение цветных и платиновых металлов, и отделение их от золота в процессе растворения. Возможность регулирования процесса растворения и контроля за его протеканием по величине ОВП. Использование метода на аффинажном производстве, в анализе и технологии. Твердофазное хлорирование. Специфика метода.	4	0	0
2	1	Окислительновосстановительное равновесие иридий (IV) ↔ иридий (III): акватация и гидратация комплексов. Многообразие форм нахождения в растворе рутения и осмия. Влияние поливалентности. Типичные комплексы рутения и осмия, используемые в анализе. Соединения металлов в щелочной среде: оксокомплексы.	4	0	0
3	2	Координационные числа и типы орбиталей платины (II) и платины (IV) в комплексах с лигандами: хлор и амин. Внешнеорбитальные ацидокомплексы, их лабильность, реакционная способность. Амминые внутриорбитальные комплексы платины, их устойчивость, пространственная конфигурация.	0	0	0

4	4	Метод оценки чистоты и пробы благородных металлов и изделий из них. Оборудование: пробирные камни (кремнистые сланцы); пробирные иглы (ключи) — сплавы металлов известного состава. Реактивы: кислоты и смеси кислот, азотнокислое серебро, цианидный комплекс железа (III). Возможности метода. Опробирование изделий из золота, серебра, платины и палладия.	4	0	0
---	---	--	---	---	---

5	5	Определение родия, иридия и осмия по каталитической волне водорода и методом инверсионной вольтамперометрии. Новое направление — экстракционная вольтамперометрия. Амперометрическое титрование благородных металлов по току органических и неорганических и неорганических реактивов. Амперометрические сенсоры. Метод непрерывного проточно-инжекционного анализа. Ионселективные электроды. ИСЭ для определения золота и серебра в растворе тиомочевинных комплексов. Использование электродов в контроле технологических процессов в автоматическом режиме. ИСЭ для определения	6	0	0
		-			
		Ионселективные			
		-			
		-			
_	_		6	0	
3	3		6	0	0
		-			
		_			
		процессов в			
		=			
		_			
		элементов группы			
		платины. Возможности			
		кулонометрического анализа: экспрессность и			
		безэталонность,			
		прецизионное определение			
		микросодержаний ионов в			
		различных степенях			
		окисления. Возможность			
		кулонометрического			
		определения степени			
		окисления металлов. Кулонометрический			
		анализ во фторидных			
		средах.			
D	<u> </u>	1 -0	10	0	0
Dage				Δ	

3.4 Лабораторные занятия

п/п	раздела дисципл ины		Всего	в том числе, в инновационной форме	в том числе, в электронной форме
1	1	Приготовление стандартных растворов металлов - методом кислотного растворов серебра, платины, палладия	4	0	0
2	1	Изучение состава комплексных соединений платины кондуктометрическим методом	4	0	0
3	2	Изучение свойств золота.	4	0	0
4	2	Приготовление стандартных растворов методом окислительного спекания: родия, иридия, рутения и осмия	2	0	0
5	5	Спектрофотомерическое определение рутения и осмия с тиомочевиной	4	0	0
Dagre			10	0	

5 Фонд оценочных средств для проведения промежуточной аттестации

Оценочные средства находятся в приложении к рабочим программам дисциплин.

8 Методические указания для обучающихся по освоению дисциплины (модуля)

9 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю) (при необходимости)

9.1 Перечень необходимого программного обеспечения

9.1.1	Microsoft Office Professional Plus 2007.
9.1.2	Приложения ChemOffice Ultra 11 - пакет утилит для химиков, таких как:
	ChemDraw, Chem3D, ChemFinder, ChemACX

9.2 Перечень необходимых информационных справочных систем

9.2.1	1. Электронно-библиотечная система Znanium.com предоставляет
	зарегистрированным пользователям круглосуточный доступ к электронным
	изданиям из любой точки мира посредством сети Интернет Режим доступа:
	http://znanium.com/
9.2.2	2. Электронная химическая энциклопедия – он-лайн Режим доступа:
	http://www.xumuk.ru/encyklopedia/.
9.2.3	3. Сайт аналитической химии Режим доступа:
	http://www.geocities.com/novedu/
9.2.4	4. Сайт по применению методов математической статистики и теории
	вероятностей в аналитической химии для обработки результатов
	аналитических измерений. Режим доступа: http://chemstat.com.ru/
9.2.5	5. Портал «Аналитическая химия в России» Режим доступа:
	http://www.rusanalytchem.org/
9.2.6	

10 Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю)

Для чтения лекций используется аудитория, оборудованная мультимедийным оборудованием. Практические занятия проводятся в учебной аудитории с использованием доски. Лабораторные занятия проходят в учебных химических лабораториях кафедры аналитической и органической химии.